Гидроакустика
Версия 10:49, 15 февраля 2015 | Текущая версия на 04:57, 11 декабря 2015 | |||
не показано 47 промежуточных версии 2 участников | ||||
Строка 1: | Строка 1: | |||
? | + | '''[[Navy:Гидроакустика|Гидроакустика]]''' (от греч. ''hydor'' — вода, ''akusticoc'' — слуховой) — наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. Она включает вопросы разработки и создания гидроакустических средств, предназначенных для использования в водной среде. | ||
? | + | <noinclude> | ||
? | + | == История развития == | ||
? | + | {| | ||
? | == История развития | + | |- | |
? | Гидроакустика — | + | '''Гидроакустика''' — быстро развивающаяся в настоящее время наука, и имеющая, несомненно, большое будущее. Ее появлению предшествовал долгий путь развития теоретической и прикладной акустики. | |
? | Первые сведения о проявлении интереса человека к распространению звука в воде мы находим в записках известного ученого эпохи Возрождения Леонардо да Винчи: | + | Первые сведения о проявлении интереса человека к распространению звука в воде мы находим в записках известного ученого эпохи Возрождения [[Леонардо да Винчи]]: | |
{{цитата| «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой ее конец приложишь к уху, то услышишь идущие вдали корабли*.}} | {{цитата| «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой ее конец приложишь к уху, то услышишь идущие вдали корабли*.}} | |||
? | Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. | + | ||
+ | Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. 30 июня 1804 г. он совершил полет на воздушном шаре с научной целью и в этом полете воспользовался отражением звука от поверхности земли для определения высоты полета. Находясь в корзине шара, он громко крикнул в рупор, направленный вниз. Через 10 сек пришло отчетливо слышное эхо. Отсюда Захаров заключил, что высота шара над землей равнялась приблизительно 5 х 334 = 1670 м. Этот способ лег в основу радио и гидролокации. | |||
Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал [[Navy:Макаров,_Степан_Осипович|С. О. Макаров]] в 1881 — 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники — [[гидроакустической телеметрии]]. | Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал [[Navy:Макаров,_Степан_Осипович|С. О. Макаров]] в 1881 — 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники — [[гидроакустической телеметрии]]. | |||
+ | ||||
+ | [[Файл:Lodki91.png|200px|thumb|left|Схема гидрофонической станции Балтийского завода обр.1907г.: | |||
+ | 1 — водяной насос; 2 — трубопровод; 3 — регулятор давления; 4 — электромагнитный гидравлический затвор (телеграфный клапан); 5 — телеграфный ключ; 6 — гидравлический мембранный излучатель; 7 — борт корабля; 8 — танк с водой; 9 — герметизированный микрофон]]В 1890-х гг. на Балтийском судостроительном заводе по инициативе капитана 2 ранга М. Н. Беклемишева начали работы по разработке приборов гидроакустической связи. Первые испытания гидроакустического излучателя для звукоподводной связи проводились в конце XIX в. в опытовом бассейне в Галерной гавани в Петербурге. Излучаемые им колебания хорошо прослушивались за 7 верст на Невском плавучем маяке. В результате исследований в 1905г. создали первый прибор гидроакустической связи, в котором роль передающего устройства играла специальная подводная сирена, управляемая телеграфным ключом, а приемником сигналов служил угольный микрофон, закрепленный изнутри на корпусе корабля. Сигналы регистрировались аппаратом Морзе и на слух. Позднее сирену заменили излучателем мембранного типа. Эффективность прибора, названного гидрофонической станцией, значительно повысилась. Морские испытания новой станции состоялись в марте 1908г. на Черном море, где дальность уверенного приема сигналов превышала 10км. | |||
+ | ||||
+ | Первые серийные станции звукоподводной связи конструкции Балтийского завода в 1909—1910 гг. установили на подводных лодках ''[[«Карп»]]'', ''[[«Пескарь»]]'', ''[[«Стерлядь»]]'', [[Navy:Макрель_(1904)|«''Макрель''»]] и [[Navy:Окунь_(1904)|«''Окунь''»]]. При установке станций на подводных лодках в целях уменьшения помех приемник располагался в специальном обтекателе, буксируемом за кормой на кабель-тросе. К подобному решению англичане пришли лишь во время Первой мировой войны. Затем эту идею забыли и только в конце 1950-х г г. ее снова стали использовать в разных странах при создании помехоустойчивых гидролокационных корабельных станций. | |||
Толчком к развитию гидроакустики послужила [[Navy:Первая_мировая_война|первая мировая война]]. Во время воины страны [[Антанты]] несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван [[шумопеленгатор]]. Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой<ref>Сегнетова соль — это двойная натриево-калиевая соль винной кислоты с четырьмя молекулами кристаллизационной воды, обозначаемая химической формулой | Толчком к развитию гидроакустики послужила [[Navy:Первая_мировая_война|первая мировая война]]. Во время воины страны [[Антанты]] несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван [[шумопеленгатор]]. Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой<ref>Сегнетова соль — это двойная натриево-калиевая соль винной кислоты с четырьмя молекулами кристаллизационной воды, обозначаемая химической формулой | |||
NaKC4H406 + 4H20.</ref> соли для первой шумопеленгаторной станции. | NaKC4H406 + 4H20.</ref> соли для первой шумопеленгаторной станции. | |||
+ | |} | |||
+ | ||||
+ | ==Основы гидроакустики== | |||
+ | ===Особенности распространения акустических волн в воде=== | |||
+ | [[Файл:Звук1.jpg|200px|thumb|left|Компоненты события появления эхосигнала.]] | |||
+ | Начало всесторонних и фундаментальных исследований по распространению акустических волн в воде было положено в годы Второй мировой войны, что диктовалось необходимостью решения практических задач военно-морских флотов и в первую очередь подводных лодок. Экспериментальные и теоретические работы были продолжены и в послевоенные годы и обобщены в ряде монографий. В результате этих работ были выявлены и уточнены некоторые особенности распространения акустических волн в воде: поглощение, затухание, отражение и рефракция. | |||
+ | ||||
+ | Поглощение энергии акустической волны в морской воде обуславливается двумя процессами: внутренним трением среды и диссоциацией растворенных в ней солей. Первый процесс преобразует энергию акустической волны в тепловую, а второй — преобразуясь в химическую энергию, выводит молекулы из равновесного состояния, и они распадаются на ионы. Этот вид поглощения резко возрастает с увеличением частоты акустического колебания. | |||
+ | Наличие в воде взвешенных частиц, микроорганизмов и температурных аномалий приводит также к затуханию акустической волны в воде. Как правило, эти потери невелики, и их включают в общее поглощение, однако иногда, как, например, в случае рассеяния от следа корабля, эти потери могут составить До 90 %. Наличие температурных аномалий приводит к тому, что акустическая волна попадает в зоны акустической тени, где она может претерпеть многократные отражения. | |||
+ | ||||
+ | Наличие границ раздела вода — воздух и вода — дно приводит к отражению от них акустической волны, причем, если в первом случае акустическая волна отражается полностью, то во втором случае коэффициент отражения зависит от материала дна: плохо отражает илистое дно, хорошо — песчаное и каменистое. На небольших глубинах из-за многократного отражения акустической волны между дном и поверхностью возникает подводный звуковой канал, в котором акустическая волна может распространяться на большие расстояния. Изменение величины скорости звука на разных глубинах приводит к искривлению звуковых «лучей» — рефракции. | |||
+ | ====Рефракция звука (искривление пути звукового луча)==== | |||
+ | {| | |||
+ | |- | |||
+ | | [[Файл:Gidroakustika1.jpg|200px|thumb|right|Рефракция звука в воде: а — летом; б — зимой; слева — изменение скорости с глубиной.]] | |||
+ | Скорость распространения звука изменяется с глубиной, причём изменения зависят от времени года и дня, глубины водоёма и ряда других причин. | |||
+ | Звуковые лучи, выходящие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде: | |||
+ | летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве отражаются от дна, теряя при этом значительную долю своей энергии; | |||
+ | зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и многократно отражаются от поверхности воды, при этом теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. | |||
+ | Вертикальное распределение скорости звука (ВРСЗ) и градиент скорости оказывают определяющее влияние на распространение звука в морской среде. Распределение скорости звука в различных районах Мирового океана различно и меняется во времени. Различают несколько типичных случаев ВРСЗ: | |||
+ | * [[изотермия]] | |||
+ | * [[положительная рефракция]] | |||
+ | * [[отрицательная рефракция]] | |||
+ | * [[неоднородное распределение]] | |||
+ | |} | |||
+ | ||||
+ | ====Рассеивание и поглощение звука неоднородностями среды.==== | |||
+ | ||||
+ | {| | |||
+ | |- | |||
+ | |[[Файл:Gidroakustika2.jpg|200px|thumb|left|Распространение звука в подводном звук. канале: а — изменение скорости звука с глубиной; б — ход лучей в звуковом канале.]] | |||
+ | На распространение звуков высокой частоты, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: пузырьки газов, микроорганизмы и т. д. | |||
+ | Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. | |||
+ | ||||
+ | Рассеивание звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление [[подводной реверберации]], сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания. | |||
+ | Пределы дальности распространения подводных звуков так же ограничиваются собственными шумами моря, имеющими двоякое происхождение: | |||
+ | часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п.; | |||
+ | другая часть связана с морской фауной (звуки, производимые гидробионтами: рыбами и др. морскими животными). Этим очень серьёзным аспектом занимается биогидроакустика. | |||
+ | |} | |||
+ | ||||
+ | ====Дальность распространения звуковых волн==== | |||
+ | Дальность распространения звуковых волн является сложной функцией частоты излучения, которая однозначно связана с длиной волны акустического сигнала. Как известно, высокочастотные акустические сигналы быстро затухают благодаря сильному поглощению водной средой. Низкочастотные сигналы напротив способны распространяться в водной среде на большие расстояния. Так акустический сигнал с частотой 50 Гц способен распространяться в океане на расстояния в тысячи километров, в то время как сигнал с частотой 100 кГц, обычный для гидролокатора бокового обзора, имеет дальность распространения всего 1-2 км. Приблизительные дальности действия современных гидролокаторов с различной частотой акустического сигнала (длиной волны) приведены в таблице: | |||
+ | {| class="wikitable" border="1" width="100%" | |||
+ | |- | |||
+ | ! Частота акустического сигнала!! Длина волны акустического сигнала !! Дальность действия | |||
+ | |- align="center" | |||
+ | | 100 Гц || 15 м|| 1000 км и более | |||
+ | |- align="center" | |||
+ | | 1 кГц || 1,5 м || 100 км и более | |||
+ | |- align="center" | |||
+ | | 10 кГц || 15 см || 10 км | |||
+ | |- align="center" | |||
+ | | 25 кГц || 6 см || 3 км | |||
+ | |- align="center" | |||
+ | | 50 кГц || 3 см || 1 км | |||
+ | |- align="center" | |||
+ | | 100 кГц || 1,5 см || 600 м | |||
+ | |- align="center" | |||
+ | | 500 кГц || 3 мм || 150 м | |||
+ | |- align="center" | |||
+ | | 1000 кГц|| 1,5 мм || 50 м | |||
+ | |} | |||
+ | ||||
+ | ==Области применения.== | |||
+ | Гидроакустика получила широкое практическое применение, поскольку ещё не создано эффективной системы передачи электромагнитных волн под водой на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. | |||
+ | Для этих целей пользуются звуковыми частотами от 300 до 10000 гц и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и гидрофоны, а в ультразвуковой — пьезоэлектрические и магнитострикционные. | |||
+ | ||||
+ | Наиболее существенные применения гидроакустики: | |||
+ | * Для решения военных задач; | |||
+ | * Морская навигация; | |||
+ | * Звукоподводная связь; | |||
+ | * Рыбопоисковая разведка; | |||
+ | * Океанологические исследования; | |||
+ | * Сферы деятельности по освоению богатств дна Мирового океана; | |||
+ | * Использование акустики в бассейне (дома или в тренировочном центре по синхронному плаванию) | |||
+ | * Тренировка морских животных. | |||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
== Примечания == | == Примечания == | |||
<references /> | <references /> | |||
+ | == Литература и источники информации == | |||
+ | '''ЛИТЕРАТУРА:''' | |||
+ | * {{книга | |||
+ | | автор = В.В. Шулейкин | |||
+ | | заглавие = Физика моря | |||
+ | | место = Москва | |||
+ | | издание = | |||
+ | | год = 1968г. | |||
+ | | allpages = 1090 | |||
+ | | издательство = «Наука» | |||
+ | | isbn = | |||
+ | | ref = | |||
+ | }} | |||
+ | * {{книга | |||
+ | | автор = И.А. Румынская | |||
+ | | заглавие = Основы гидроакустики | |||
+ | | место = Москва | |||
+ | | издание = | |||
+ | | год = 1979 г. | |||
+ | | allpages = 105 | |||
+ | | издательство = «Судостроение» | |||
+ | | isbn = | |||
+ | | ref = | |||
+ | }} | |||
+ | * {{книга | |||
+ | | автор = Ю.А. Корякин | |||
+ | | заглавие = Гидроакустические системы | |||
+ | | место = СПб | |||
+ | | издание = | |||
+ | | год = 2002 г. | |||
+ | | allpages = 416 | |||
+ | | издательство = «Наука Санкт-Петербурга и морская мощь России» | |||
+ | | isbn = | |||
+ | | ref = | |||
+ | }} | |||
+ | ||||
+ | '''ССЫЛКИ:''' | |||
+ | *[https://ru.wikipedia.org/wiki/Гидроакустика Страница на Википедии] | |||
+ | *[https://dic.academic.ru/dic.nsf/enc_physics/626/ГИДРОАКУСТИКА/ГИДРОАКУСТИКА Словари и энциклопедии на Академике] | |||
+ | *[https://www.submarine.itishistory.ru/1_lodka_16.php Гидроакустика на подводной лодке] | |||
+ | ||||
+ | ||||
+ | ||||
+ | <!-- Начало служебного блока. Не редактировать! --> {{#seo:|title= Гидроакустика — наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. |titlemode=replace|description= Гидроакустика — наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. Она включает вопросы разработки и создания гидроакустических средств, предназначенных для использования в водной среде. }} [[Категория:Оптима]] <!-- Конец служебного блока --> | |||
+ | [[Категория:Словарь морских терминов]]</noinclude> |
Текущая версия на 04:57, 11 декабря 2015
Гидроакустика (от греч. hydor — вода, akusticoc — слуховой) — наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. Она включает вопросы разработки и создания гидроакустических средств, предназначенных для использования в водной среде.
Содержание
История развития
«Если ты, будучи на море, опустишь в воду отверстие трубы, а другой ее конец приложишь к уху, то услышишь идущие вдали корабли*. |
Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. 30 июня 1804 г. он совершил полет на воздушном шаре с научной целью и в этом полете воспользовался отражением звука от поверхности земли для определения высоты полета. Находясь в корзине шара, он громко крикнул в рупор, направленный вниз. Через 10 сек пришло отчетливо слышное эхо. Отсюда Захаров заключил, что высота шара над землей равнялась приблизительно 5 х 334 = 1670 м. Этот способ лег в основу радио и гидролокации.
Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал С. О. Макаров в 1881 — 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники — гидроакустической телеметрии.
В 1890-х гг. на Балтийском судостроительном заводе по инициативе капитана 2 ранга М. Н. Беклемишева начали работы по разработке приборов гидроакустической связи. Первые испытания гидроакустического излучателя для звукоподводной связи проводились в конце XIX в. в опытовом бассейне в Галерной гавани в Петербурге. Излучаемые им колебания хорошо прослушивались за 7 верст на Невском плавучем маяке. В результате исследований в 1905г. создали первый прибор гидроакустической связи, в котором роль передающего устройства играла специальная подводная сирена, управляемая телеграфным ключом, а приемником сигналов служил угольный микрофон, закрепленный изнутри на корпусе корабля. Сигналы регистрировались аппаратом Морзе и на слух. Позднее сирену заменили излучателем мембранного типа. Эффективность прибора, названного гидрофонической станцией, значительно повысилась. Морские испытания новой станции состоялись в марте 1908г. на Черном море, где дальность уверенного приема сигналов превышала 10км.Первые серийные станции звукоподводной связи конструкции Балтийского завода в 1909—1910 гг. установили на подводных лодках «Карп», «Пескарь», «Стерлядь», «Макрель» и «Окунь». При установке станций на подводных лодках в целях уменьшения помех приемник располагался в специальном обтекателе, буксируемом за кормой на кабель-тросе. К подобному решению англичане пришли лишь во время Первой мировой войны. Затем эту идею забыли и только в конце 1950-х г г. ее снова стали использовать в разных странах при создании помехоустойчивых гидролокационных корабельных станций.
Толчком к развитию гидроакустики послужила первая мировая война. Во время воины страны Антанты несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван шумопеленгатор. Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой[1] соли для первой шумопеленгаторной станции.
Основы гидроакустики
Особенности распространения акустических волн в воде
Начало всесторонних и фундаментальных исследований по распространению акустических волн в воде было положено в годы Второй мировой войны, что диктовалось необходимостью решения практических задач военно-морских флотов и в первую очередь подводных лодок. Экспериментальные и теоретические работы были продолжены и в послевоенные годы и обобщены в ряде монографий. В результате этих работ были выявлены и уточнены некоторые особенности распространения акустических волн в воде: поглощение, затухание, отражение и рефракция.
Поглощение энергии акустической волны в морской воде обуславливается двумя процессами: внутренним трением среды и диссоциацией растворенных в ней солей. Первый процесс преобразует энергию акустической волны в тепловую, а второй — преобразуясь в химическую энергию, выводит молекулы из равновесного состояния, и они распадаются на ионы. Этот вид поглощения резко возрастает с увеличением частоты акустического колебания. Наличие в воде взвешенных частиц, микроорганизмов и температурных аномалий приводит также к затуханию акустической волны в воде. Как правило, эти потери невелики, и их включают в общее поглощение, однако иногда, как, например, в случае рассеяния от следа корабля, эти потери могут составить До 90 %. Наличие температурных аномалий приводит к тому, что акустическая волна попадает в зоны акустической тени, где она может претерпеть многократные отражения.
Наличие границ раздела вода — воздух и вода — дно приводит к отражению от них акустической волны, причем, если в первом случае акустическая волна отражается полностью, то во втором случае коэффициент отражения зависит от материала дна: плохо отражает илистое дно, хорошо — песчаное и каменистое. На небольших глубинах из-за многократного отражения акустической волны между дном и поверхностью возникает подводный звуковой канал, в котором акустическая волна может распространяться на большие расстояния. Изменение величины скорости звука на разных глубинах приводит к искривлению звуковых «лучей» — рефракции.
Рефракция звука (искривление пути звукового луча)
Скорость распространения звука изменяется с глубиной, причём изменения зависят от времени года и дня, глубины водоёма и ряда других причин. Звуковые лучи, выходящие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде: летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве отражаются от дна, теряя при этом значительную долю своей энергии; зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и многократно отражаются от поверхности воды, при этом теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вертикальное распределение скорости звука (ВРСЗ) и градиент скорости оказывают определяющее влияние на распространение звука в морской среде. Распределение скорости звука в различных районах Мирового океана различно и меняется во времени. Различают несколько типичных случаев ВРСЗ: |
Рассеивание и поглощение звука неоднородностями среды.
На распространение звуков высокой частоты, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: пузырьки газов, микроорганизмы и т. д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеивание звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации, сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания. Пределы дальности распространения подводных звуков так же ограничиваются собственными шумами моря, имеющими двоякое происхождение: часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п.; другая часть связана с морской фауной (звуки, производимые гидробионтами: рыбами и др. морскими животными). Этим очень серьёзным аспектом занимается биогидроакустика. |
Дальность распространения звуковых волн
Дальность распространения звуковых волн является сложной функцией частоты излучения, которая однозначно связана с длиной волны акустического сигнала. Как известно, высокочастотные акустические сигналы быстро затухают благодаря сильному поглощению водной средой. Низкочастотные сигналы напротив способны распространяться в водной среде на большие расстояния. Так акустический сигнал с частотой 50 Гц способен распространяться в океане на расстояния в тысячи километров, в то время как сигнал с частотой 100 кГц, обычный для гидролокатора бокового обзора, имеет дальность распространения всего 1-2 км. Приблизительные дальности действия современных гидролокаторов с различной частотой акустического сигнала (длиной волны) приведены в таблице:
Частота акустического сигнала | Длина волны акустического сигнала | Дальность действия |
---|---|---|
100 Гц | 15 м | 1000 км и более |
1 кГц | 1,5 м | 100 км и более |
10 кГц | 15 см | 10 км |
25 кГц | 6 см | 3 км |
50 кГц | 3 см | 1 км |
100 кГц | 1,5 см | 600 м |
500 кГц | 3 мм | 150 м |
1000 кГц | 1,5 мм | 50 м |
Области применения.
Гидроакустика получила широкое практическое применение, поскольку ещё не создано эффективной системы передачи электромагнитных волн под водой на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. Для этих целей пользуются звуковыми частотами от 300 до 10000 гц и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и гидрофоны, а в ультразвуковой — пьезоэлектрические и магнитострикционные.
Наиболее существенные применения гидроакустики:
- Для решения военных задач;
- Морская навигация;
- Звукоподводная связь;
- Рыбопоисковая разведка;
- Океанологические исследования;
- Сферы деятельности по освоению богатств дна Мирового океана;
- Использование акустики в бассейне (дома или в тренировочном центре по синхронному плаванию)
- Тренировка морских животных.
Примечания
- ↑ Сегнетова соль — это двойная натриево-калиевая соль винной кислоты с четырьмя молекулами кристаллизационной воды, обозначаемая химической формулой NaKC4H406 + 4H20.
Литература и источники информации
ЛИТЕРАТУРА:
- В.В. Шулейкин Физика моря. — Москва: «Наука», 1968г.. — 1090 с.
- И.А. Румынская Основы гидроакустики. — Москва: «Судостроение», 1979 г.. — 105 с.
- Ю.А. Корякин Гидроакустические системы. — СПб: «Наука Санкт-Петербурга и морская мощь России», 2002 г.. — 416 с.
ССЫЛКИ: