Беспилотный подводный аппарат
Содержание
Классификация
Современные НПА представляют собой отдельную группу робототехнических устройств, выполняющих определенные задачи, а также обладающие определенными техническими характеристиками и функциональными свойствами. При всем разнообразии беспилотных подводных аппаратов (по целевому назначению, массогабаритным характеристикам, конструктивному облику, типу энергосиловой установки и т.д.) общепризнанной классификации в этом классе подводных аппаратов еще не сложилось.
Надо отметить, что деление НПА по признаку автономности сформировалось в процессе эволюции этого вида техники, и под автономностью понимается, прежде всего, энергетическая независимость аппарата от судна-носителя.
Принято делить НПА на «телеуправляемые необитаемые подводные аппараты» (сокр. ТНПА, англ. Remote Operated Vehicle или ROV) и «автономные необитаемые подводные аппараты» (сокр. АНПА, англ. Autonomous Underwater Vehicle или AUV).
Подводные аппараты обычно подразделяются на категории в зависимости от их размера, веса, возможностей или мощности.
Классификация ТНПА
В отношении ТНПА используются следующие категории:
Классификация ТНПА в соответствии с массой | ||
---|---|---|
Название | Масса аппарата (кг) |
Описание |
«Микро» | < 5 | Эти аппараты часто используются в качестве альтернативы водолазу, особенно в местах, куда человек не в состоянии проникнуть, - например, в канализации, трубопроводе или помещении небольшого объема |
«Мини» | 5 - 30 | Такие аппараты один человек может транспортировать на небольшой лодке[1] |
Общего назначения |
20 - 350 | Предназначены для решения поисковых, инспекционных и осмотровых задач, выполнения легких механических работ в толще воды и проведения измерений параметров водной среды. Их типовые характеристики: максимальная рабочая глубина - до 3000 м (в большинстве проектов – до 1000 м); радиус действия (максимальное удаление от судна-носителя) – 100–150 м (в редких случаях до 1000 м); скорость подводного хода – 1–2,5 узла |
«Рабочая» категория |
30 - 6000 | Аппараты «рабочей» категории предназначены для решения широкого круга подводно-технических работ (аварийно-спасательных, поисковых, инженерно-строительных и ремонтных), и оснащены достаточно сложным навесным оборудованием |
Донные | до 12 000 | Аппараты на гусеничном ходу, предназначенные для тяжелых механических работ (таких как прокладка трубопровода или кабеля) на морском дне |
ТНПА могут связаны тросом (и кабелем) с судном-носителем или платформой, или они могут работать из специального «гаража», который опускается с судна или платформы[2].
Классификация АНПА
Наиболее общими и существенными классификационными признаками для АНПА (включая полуавтономные НПА) являются целевое назначение, массогабаритные характеристики и конструктивный облик, включая тип движителя и системы энергообеспечения.
Целевое назначение АНПА может быть военным, гражданским, двойным или экспериментальным. Надо отметить, что модульный принцип построения современных аппаратов привел к стиранию граней между их целевым назначением. Практически все современные разработки конструкций АНПА являются многоцелевыми.
В соответствии с массой АНПА принято делить на следующие категории:
- «Микро»-аппараты, с массой до 20 кг. Данная категория составляет 20–25% от общего числа известных проектов АНПА. Большая часть моделей «микро» создается с использованием бионических принципов и носит экспериментальный характер. Типовые технические характеристики этой категории аппаратов: дальность плавания не более 1–2 морских миль, предельная рабочая глубина менее 150 м; скорость хода – 1,5–2 узла;
- «Мини»-аппараты, с массой 20 - 100 кг. Категория мини-АНПА составляет 15–20% от общего числа проектов. Диапазон дальности плавания весьма широк – от 0,5 до 4000 морских миль;
- Малые АНПА от 100 до 350 кг;
- Средние АНПА с массой от 350 до 2000 кг;
- Большие АНПА, представленные аппаратами массой свыше 2000 кг.
Сравнение ТНПА и АНПА
Достоинства неавтономных НПА по сравнению с автономными:
- большая продолжительность непрерывной работы (энергоснабжение этих аппаратов осуществляется либо с борта обеспечивающего судна, либо при помощи берегового оборудования);
- возможность выполнения сложных и тяжелых механических работ в толще воды и на донной поверхности;
- относительно низкая стоимость постройки и эксплуатации (существенно меньшая сложность конструкции по сравнению с АНПА одного и того же класса);
- относительно высокая надежность конструкции (практически нет риска невозвращения аппарата).
Наряду с достоинствами, неавтономные НПА обладают и рядом недостатков, основными из которых являются следующие:
- полная зависимость аппарата от обеспечивающего судна или берегового надводного оборудования;
- радиус действия аппарата ограничен длиной кабеля-связки;
- на борту обеспечивающего судна необходимо устройство управления натяжением кабеля-связки (во время волнения моря);
- сложность управления аппаратом в условиях сильных течений, опасности обрушения берега или окружающих конструкций, а также узкостей.
Эти недостатки, а также достижения в области энергетики, электроники и информационных технологий послужили мощным стимулом к стремительному развитию АНПА.
Беспилотные системы с каждым годом всё активнее «завоёвывают» пространство в воздухе, на поверхности земли и воды, под водой и в космосе. Причинами быстрого развития и широкого применения беспилотной роботизированной техники можно назвать следующие факторы:
- При выполнении любой задачи c помощью беспилотных систем полностью обеспечивается такое важное требование как безопасность жизни человека — ему просто нет необходимости присутствовать лично в зонах повышенной опасности;
- Так как нет необходимости организовывать рабочее место для человека, уменьшаются габаритные размеры аппарата и его энергозатраты, что позволяет максимально миниатюризировать все беспилотные системы;
- Благодаря небольшим размерам, беспилотные системы можно изготавливать и модернизировать практически, в любой лаборатории, мастерской, в университетах и т. д., то есть, не нужно строить большие специализированные заводы;
- При эксплуатации появляется возможность использовать тактику «стаи», когда десятки, сотни и даже тысячи маленьких аппаратов совместно выполняют единую задачу. Это намного эффективнее, быстрее и дешевле, чем использование для тех же целей одного большого дорогостоящего аппарата.
История
ВМС США профинансировали большую часть ранних разработок в области ТНПА в 1960-х годах. Первым проектам было присвоено название «Подводный спасательный аппарат с кабельным управлением» (англ. Cable-Controlled Underwater Recovery Vehicle или CURV). Появление первых ТНПА создало возможности для проведения глубоководных спасательных операций и извлечения предметов со дна океана. Первые ТНПА использовались при поиске термоядерной бомбы, потерянной в Средиземном море после катастрофы бомбардировщика B-52G в 1966 году.
Опираясь на созданную технологическую базу, морская нефтегазовая промышленность создала ТНПА рабочего класса для оказания помощи в разработке морских нефтяных месторождений.
Первый АНПА был разработан в Лаборатории прикладной физики Вашингтонского университета еще в 1957 году. «Подводный исследовательский аппарат специального назначения» (англ. Self-Propelled Underwater Research Vehicle или SPURV) использовался для изучения свойств водной среды, исследований в области акустики и возможности обнаружения следа от подводной лодки.
В СССР начиная с 1960-х годов создавали и отрабатывали технологии дистанционно управляемых подводных аппаратов, которые могли использоваться при глубоководных работах, для разведки морского дна или в спасательных операциях. На этом этапе были созданы системы управления подобных аппаратов, манипуляторы, телевизионная аппаратура, а также отработаны различные методы навигации. Первыми советскими подводными роботами стали аппараты «Манта», «Скат», «Макс-2» и комплекс «Лортодромия», который применялся для обследования затонувших подводных лодок К-8, К-219 и «Комсомолец».
Спустя более десяти лет после появления первых ТНПА, в 1980-х годах, они стали незаменимыми, когда большая часть новых морских разработок вышла за пределы досягаемости людей-дайверов. В середине 1980-х годов индустрия морских беспилотных аппаратов страдала от серьезной стагнации в технологическом развитии, частично вызванной падением цен на нефть и глобальным экономическим спадом. С тех пор технологическое развитие в индустрии беспилотных аппаратов ускорилось, и сегодня беспилотные аппараты выполняют множество задач во многих областях. Их задачи варьируются от простого осмотра подводных сооружений, трубопроводов и платформ до соединения трубопроводов и размещения подводных коллекторов. Они широко используются как при первоначальном строительстве подводного сооружения, так и при последующем ремонте и обслуживании.
В 1985 году франко-американская экспедиция под руководством Жан-Луи Мишеля (фр. Jean-Louis Michel) и Роберта Балларда (англ. Robert Ballard) при помощи НПА «Арго» (англ. Argo) обнаружила корпус RMS Titanic.
Подводные аппараты также использовались для обнаружения других исторических кораблекрушений, в том числе Bismarck и USS Yorktown.
Особенности конструкции
Агрегаты ТНПА рабочего класса монтируются на алюминиевом шасси, чтобы обеспечить необходимую плавучесть для выполнения различных задач. Сложность конструкции алюминиевой рамы варьируется в зависимости от производителя аппарата. Синтактическая пена часто используется в качестве плавучего материала. В нижней части системы может быть установлена подставка для размещения различных датчиков или инструментов. Благодаря размещению легких компонентов сверху, а тяжелых - снизу, аппарат как правило имеет большое расстояние между центром плавучести и центром тяжести: это обеспечивает устойчивость для выполнения работ под водой. Двигатели размещены между центром плавучести и центром тяжести для поддержания устойчивости при маневрах. Различные конфигурации двигателей и алгоритмы управления могут быть использованы для обеспечения надлежащего управления положением и ориентацией во время операций, особенно в условиях сильного течения.
Электрические компоненты могут находиться в маслонаполненных водонепроницаемых отсеках или отсеках под давлением в одну атмосферу, чтобы защитить их от коррозии в морской воде и разрушения под действием экстремального давления на глубине. ТНПА оснащается камерами, фонарями и манипуляторами для выполнения основных работ. Дополнительные датчики и инструменты могут быть установлены по мере необходимости для выполнения конкретных задач.
АНПА по конструкции корпуса принято делить на следующие категории:
- с классическими гидродинамическими формами (цилиндрической, торпедообразной, каплеобразной, сигарообразной, плоской и комбинированной);
- планерной формы с системой движения, основанной на изменении собственной (остаточной) плавучести аппарата;
- с плоской верхней частью корпуса (солнечные АНПА аппараты с фотоэлектронными преобразователями для подзарядки аккумуляторных батарей);
- с бионическими формами (плавающего и ползущего типа) или созданные с использованием бионических принципов (например, аппараты с плавниковыми движителями).
Большинство современных АНПА имеют модульную конструкцию, позволяющую легко модернизировать аппарат под конкретную задачу.
В базовый состав модулей входят следующие системы:
- Носовой модуль содержит систему технического зрения, в состав которой могут входить обзорные гидролокаторы, фото/видеокамеры, средства поиска и устройства обработки «зрительной» информации, а также гидроакустические системы;
- Батарейный модуль включает системы энергообеспечения;
- Модуль управления и связи включает элементы, осуществляющие контрольные функции, приёмо-передающую аппаратуру, а также бортовой автономный инерциальный навигационный комплекс с доплеровским измерителем скорости и приёмником спутниковой навигации;
- Модуль движителя и следящей системы снабжён системой управления движением или автопилота, движительно-рулевым и гидроакустическим навигационным комплексом;
- Дополнительные модули могут быть оснащены информационно-измерительной системой, акустическим профилографом, геофизическими приборами и т. д.
Применение необитаемых подводных аппаратов
Боевые НПА
По мере роста возможностей НПА все шире используются военно-морскими силами и береговой охраной по всему миру для выполнения задач обезвреживания взрывоопасных предметов, метеорологии, охраны акватории портов, противоминных контрмер и разведки. Они также широко используются полицейскими управлениями и поисково-спасательными группами.
На вооружении ВМC США состоит ТНПА для обезвреживания мин (англ. Mine Neutralization Vehicle или MNV) AN/SLQ-48. Он может работать на дистанции 1000 ярдов от корабля на глубине 2000 футов. В комплект оборудования аппарата входит следующее:
- Инструмент для поднятия на поверхность или обезвреживания взрывоопасных предметов;
- Фугасная бомба весом 75 фунтов на полимерной основе PBXN-103, предназначенная для обезвреживания донных мин[3];
- Манипулятор для захвата мин и поплавок с комбинацией бомб для нейтрализации мин под водой.
АНПА ВМС США AN/BLQ-11 предназначен для скрытого противодействия минированию и может запускаться с определенных типов подводных лодок.
В ВМС США в 2017 году был сформирован первый отряд подводных дронов. Подразделение «1-й Эскадрильи Беспилотных Подводных Аппаратов» (англ. Unmanned Undersea Vehicle Squadron One или UUVRON 1) достигнет полной боеготовности в начале 2020-х г.г. Личный состав UUVRON 1 насчитывает более 100 военнослужащих.
В ВМС России по состоянию на 2016 год уже несколько лет стоит на вооружении комплекс НПА «Клавесин-1Р», который используется в исследовательских и разведывательных целях, а также для картографирования и поиска затонувших объектов. Беспилотный роботизированный комплекс «Фугу», построенный на основе автономных необитаемых глайдеров, предназначен для передачи сигналов боевого управления стратегическим и ракетным атомным подводным лодкам, а также для сбора информации об условиях мореплавания в районах боевого патрулирования.
Научно-исследовательские НПА
Подводные аппараты также широко используются научным сообществом для изучения океана. Ряд глубоководных животных и растений были обнаружены или изучены в их естественной среде обитания с помощью НПА. В качестве примера можно привести медузу Stellamedusa ventana и глубоководных рыб семейства «Галозавровых» (лат. Halosauridae).
Поскольку высокое качество изображения является ключевым компонентом большинства глубоководных научных исследований, исследовательские НПА, как правило, оснащаются системами освещения с высокой производительностью и камерами высокого разрешения. В зависимости от проводимых исследований, научный НПА будет оснащен различными устройствами для отбора проб и датчиками.
АНПА иногда используются как буксирные транспортные средства для доставки индивидуальных комплектов датчиков в определенные места.
Другие варианты применения НПА
Нефте-газовая добывающая отрасль
Нефтегазовая промышленность использует автономные подводные аппараты для составления подробных карт морского дна перед началом строительства подводной инфраструктуры. Как результат, трубопроводы и подводные сооружения могут быть проложены наиболее экономичным способом с минимальным ущербом для окружающей среды. НПА также применяют для инспекции труб после укладки. Использование автономных подводных аппаратов для осмотра трубопроводов и осмотра подводных искусственных сооружений становится все более распространенным явлением.
Расследование причин авиакатастроф
Автономные подводные аппараты применяются для поиска обломков пропавших самолетов. Например АНПА ABYSS участвовал в поиске обломков рейса 447 авиакомпании Air France в 2009 году. АНПА Bluefin-21 использовался для поиска рейса 370 авиакомпании Malaysia Airlines в 2014 году.
Медиа и киноиндустрия
НПА стали особенно популярны среди документалистов из-за их способности проникать в глубокие, опасные и ограниченные районы, недоступные для дайверов. НПА использовались при съемках нескольких документальных фильмов, в том числе «Люди-акулы» (англ. Shark Men) и «Темные тайны Лузитании» (англ. The Dark Secrets of the Lusitania).
Из-за их широкого использования военными, правоохранительными органами и службами береговой охраны, НПА также фигурируют во многих художественных криминальных драмах.
Хобби
В связи с возросшим интересом к океану со стороны многих людей, и доступностью некогда дорогого и некоммерческого оборудования, НПА стали популярным хобби. Это хобби включает в себя строительство небольших НПА, корпус которых обычно изготавливается из ПВХ-труб и часто могут погружаться на сравнительно небольшую глубину. Проводятся специальные соревнования, во время которых участники, чаще всего школы и другие организации, соревнуются друг с другом в серии заданий, используя созданные ими НПА.
Примечания
- ↑ Иногда ТНПА категорий «микро» и «мини» называют «глазное яблоко» (англ. Eyeball). Как правило, такие ТНПА предназначены для выполнения обзорно-поисковых работ, и часто не имеют манипуляторов.
- ↑ Метод размещения ТНПА в специальном погружаемом «гараже» обычно используется при работах на большой глубине.
- ↑ Заряды детонируют по акустическому сигналу с корабля.
См. также
Литература и источники информации
Литература
- В. В. Заслонов, Н. А. Кравченко Развитие глубоководной роботизированной техники. История вопроса. — Молодой ученый № 7 2016 г.. — С. 85-88.
Ссылки
- Remotely operated underwater vehicle(англ.)
- Autonomous underwater vehicle(англ.)
- Автономный необитаемый подводный аппарат
- Телеуправляемый необитаемый подводный аппарат
- USV, UUV Squadrons Testing Out Concepts Ahead of Delivery of Their Vehicles(англ.)
- Introducing SEAMOUNT “Poggy” - a novel bionic AUV from EvoLogics(англ.)
- Подводные военные роботы
- Витязь-Д - комплекс для глубоководных подводных исследований
- Scorpio_ROV
- Underwater_glider
- Беспилотные подводные аппараты
- Автономный необитаемый подводный аппарат "Клавесин-2Р-ПМ"
- Подводный аппарат Посейдон
- What is an AUV?(англ.)