Гидроакустика
Версия 14:49, 15 февраля 2015 | Версия 14:51, 15 февраля 2015 | |||
Строка 102: | Строка 102: | |||
По назначению, месту расположения на носителе и виду выполняемых работ весь ряд гидроакустических приборов и устройств можно условно разделить на несколько групп: | По назначению, месту расположения на носителе и виду выполняемых работ весь ряд гидроакустических приборов и устройств можно условно разделить на несколько групп: | |||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
===Гидролокаторы кругового и секторного обзора=== | ===Гидролокаторы кругового и секторного обзора=== |
Версия 14:51, 15 февраля 2015
Эта статья редактируется участником Jeepson:ru (обсуждение) в рамках конкурса.
За нарушение правил конкурса или создание помех в его проведении предусмотрены наказания.
Просьба воздержаться от правок.
Внимание! Приём работ окончен!
Содержание
История развития
«Если ты, будучи на море, опустишь в воду отверстие трубы, а другой ее конец приложишь к уху, то услышишь идущие вдали корабли*. |
Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. 30 июня 1804 г. он совершил полет на воздушном шаре с научной целью и в этом полете воспользовался отражением звука от поверхности земли для определения высоты полета. Находясь в корзине шара, он громко крикнул в рупор, направленный вниз. Через 10 сек пришло отчетливо слышное эхо. Отсюда Захаров заключил, что высота шара над землей равнялась приблизительно 5 х 334 = 1670 м. Этот способ лег в основу радио и гидролокации.
Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал С. О. Макаров в 1881 — 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники — гидроакустической телеметрии.
В 1890-х гг. на Балтийском судостроительном заводе по инициативе капитана 2 ранга М. Н. Беклемишева начали работы по разработке приборов гидроакустической связи. Первые испытания гидроакустического излучателя для звукоподводной связи проводились в конце XIX в. в опытовом бассейне в Галерной гавани в Петербурге. Излучаемые им колебания хорошо прослушивались за 7 верст на Невском плавучем маяке. В результате исследований в 1905г. создали первый прибор гидроакустической связи, в котором роль передающего устройства играла специальная подводная сирена, управляемая телеграфным ключом, а приемником сигналов служил угольный микрофон, закрепленный изнутри на корпусе корабля. Сигналы регистрировались аппаратом Морзе и на слух. Позднее сирену заменили излучателем мембранного типа. Эффективность прибора, названного гидрофонической станцией, значительно повысилась. Морские испытания новой станции состоялись в марте 1908г. на Черном море, где дальность уверенного приема сигналов превышала 10км.Первые серийные станции звукоподводной связи конструкции Балтийского завода в 1909—1910 гг. установили на подводных лодках «Карп», «Пескарь», «Стерлядь», «Макрель» и «Окунь». При установке станций на подводных лодках в целях уменьшения помех приемник располагался в специальном обтекателе, буксируемом за кормой на кабель-тросе. К подобному решению англичане пришли лишь во время Первой мировой войны. Затем эту идею забыли и только в конце 1950-х г г. ее снова стали использовать в разных странах при создании помехоустойчивых гидролокационных корабельных станций.
Толчком к развитию гидроакустики послужила первая мировая война. Во время воины страны Антанты несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван шумопеленгатор. Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой[1] соли для первой шумопеленгаторной станции.
Основы гидроакустики
Особенности распространения акустических волн в воде
Начало всесторонних и фундаментальных исследований по распространению акустических волн в воде было положено в годы Второй мировой войны, что диктовалось необходимостью решения практических задач военно-морских флотов и в первую очередь подводных лодок. Экспериментальные и теоретические работы были продолжены и в послевоенные годы и обобщены в ряде монографий. В результате этих работ были выявлены и уточнены некоторые особенности распространения акустических волн в воде: поглощение, затухание, отражение и рефракция.
Поглощение энергии акустической волны в морской воде обуславливается двумя процессами: внутренним трением среды и диссоциацией растворенных в ней солей. Первый процесс преобразует энергию акустической волны в тепловую, а второй — преобразуясь в химическую энергию, выводит молекулы из равновесного состояния, и они распадаются на ионы. Этот вид поглощения резко возрастает с увеличением частоты акустического колебания. Наличие в воде взвешенных частиц, микроорганизмов и температурных аномалий приводит также к затуханию акустической волны в воде. Как правило, эти потери невелики, и их включают в общее поглощение, однако иногда, как, например, в случае рассеяния от следа корабля, эти потери могут составить До 90 %. Наличие температурных аномалий приводит к тому, что акустическая волна попадает в зоны акустической тени, где она может претерпеть многократные отражения.
Наличие границ раздела вода — воздух и вода — дно приводит к отражению от них акустической волны, причем, если в первом случае акустическая волна отражается полностью, то во втором случае коэффициент отражения зависит от материала дна: плохо отражает илистое дно, хорошо — песчаное и каменистое. На небольших глубинах из-за многократного отражения акустической волны между дном и поверхностью возникает подводный звуковой канал, в котором акустическая волна может распространяться на большие расстояния. Изменение величины скорости звука на разных глубинах приводит к искривлению звуковых «лучей» — рефракции.
Рефракция звука (искривление пути звукового луча)
Скорость распространения звука изменяется с глубиной, причём изменения зависят от времени года и дня, глубины водоёма и ряда других причин. Звуковые лучи, выходящие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде: летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве отражаются от дна, теряя при этом значительную долю своей энергии; зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и многократно отражаются от поверхности воды, при этом теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вертикальное распределение скорости звука (ВРСЗ) и градиент скорости оказывают определяющее влияние на распространение звука в морской среде. Распределение скорости звука в различных районах Мирового океана различно и меняется во времени. Различают несколько типичных случаев ВРСЗ: |
Рассеивание и поглощение звука неоднородностями среды.
На распространение звуков высокой частоты, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: пузырьки газов, микроорганизмы и т. д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеивание звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации, сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания. Пределы дальности распространения подводных звуков так же ограничиваются собственными шумами моря, имеющими двоякое происхождение: часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п.; другая часть связана с морской фауной (звуки, производимые гидробионтами: рыбами и др. морскими животными). Этим очень серьёзным аспектом занимается биогидроакустика. |
Дальность распространения звуковых волн
Дальность распространения звуковых волн является сложной функцией частоты излучения, которая однозначно связана с длиной волны акустического сигнала. Как известно, высокочастотные акустические сигналы быстро затухают благодаря сильному поглощению водной средой. Низкочастотные сигналы напротив способны распространяться в водной среде на большие расстояния. Так акустический сигнал с частотой 50 Гц способен распространяться в океане на расстояния в тысячи километров, в то время как сигнал с частотой 100 кГц, обычный для гидролокатора бокового обзора, имеет дальность распространения всего 1-2 км. Приблизительные дальности действия современных гидролокаторов с различной частотой акустического сигнала (длиной волны) приведены в таблице:
Частота акустического сигнала | Длина волны акустического сигнала | Дальность действия |
---|---|---|
100 Гц | 15 м | 1000 км и более |
1 кГц | 1,5 м | 100 км и более |
10 кГц | 15 см | 10 км |
25 кГц | 6 см | 3 км |
50 кГц | 3 см | 1 км |
100 кГц | 1,5 см | 600 м |
500 кГц | 3 мм | 150 м |
1000 кГц | 1,5 мм | 50 м |
Области применения.
Гидроакустика получила широкое практическое применение, поскольку ещё не создано эффективной системы передачи электромагнитных волн под водой на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. Для этих целей пользуются звуковыми частотами от 300 до 10000 гц и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и гидрофоны, а в ультразвуковой — пьезоэлектрические и магнитострикционные.
Наиболее существенные применения гидроакустики:
- Для решения военных задач;
- Морская навигация;
- Звукоподводная связь;
- Рыбопоисковая разведка;
- Океанологические исследования;
- Сферы деятельности по освоению богатств дна Мирового океана;
- Использование акустики в бассейне (дома или в тренировочном центре по синхронному плаванию)
- Тренировка морских животных.
Классификация гидроакустических приборов и устройств
По назначению, месту расположения на носителе и виду выполняемых работ весь ряд гидроакустических приборов и устройств можно условно разделить на несколько групп:
Гидролокаторы кругового и секторного обзора
Гидролокаторы кругового и секторного обзора применяются для выполнения широкого ряда задач от гражданских до сугубо военных. Они предназначены для подводной навигации, поиска и допоиска подводных объектов, построения охранных зон и периметров. Интересно использование таких гидролокаторов в качестве подводного измерительного инструмента при обследовании различных подводных структур, когда, используя возможности ПО, можно измерить расстояния и углы между элементами отображаемого объекта. Гидролокаторы кругового и секторного обзора устанавливаются при входе в гавани и порты, на нефтяных платформах, кораблях, подводных лодках, обитаемых подводных аппаратах, телеуправляемых подводных аппаратах, применяются в переносном исполнении водолазами. Существуют специальные гидролокаторы, работающие с вертолёта при погружении ППА на кабель-тросе в воду.
Программное обеспечение в таких системах является ключевым элементом. С его помощью можно не только обрабатывать и выводить полученные с ППА данные, но и изменять сектор обзора гидролокатора, менять мощность излучаемых импульсов, изменять частоту работы ППА, определять дистанцию и пеленг до объекта, осуществлять функцию зуммирования и примерно определять материал облучаемого объекта.
Гидролокаторы бокового обзора
Гидролокаторы бокового обзора (ГБО) в основном применяются для поиска объектов, находящихся на морском дне и исследования рельефа дна для прокладки и обслуживания кабелей связи и трубопроводов. В настоящее время стало актуальным построение на основе ГБО и телеуправляемого подводного аппарата систем поиска утопленников на внутренних водоёмах и реках. Такие системы давно используются спасательными службами на озёрах США и Канады, планируется использование таких систем и в России.
"Классический" ГБО выполняется в виде буксируемого подводного аппарата в форме торпеды с двумя ППА по правой и левой стороне и буксируется на расстоянии 30-50 метров от дна со скоростью до 5 узлов. При угле обзора каждого ППА 45º, полоса сканирования дна достигает 100 метров. В некоторых случаях, особенно при прокладке трубопроводов и кабелей связи, целесообразна установка ГБО на телеуправляемый подводный аппарат или обитаемый подводный аппарат. При этом возможно прохождение аппарата на минимальной высоте от дна, и получении максимально полной картины рельефа морского дна в месте планируемой укладки.
Эхолоты
Эхолоты являются измерительными приборами, предназначенными для промера глубин, отображения профиля и примерной структуры дна, поиска и классификации различных объектов на дне и в толще воды, а также для выполнения различных навигационных задач. Независимо от сферы использования и типа все эхолоты имеют примерно одинаковую конфигурацию: ППА, блок обработки сигналов и надводный блок отображения информации. ППА эхолота имеет коническую вертикальную диаграмму направленности с углом обзора от 10 до 30º. При этом эхолот, как бы “освещает" полосу дна непосредственно под килем судна.
Профилографы морского дна
Профилографы дна предназначены для поиска заглубленных на дне объектов, например трубопроводов или кабелей, нахождения заиленных подводных объектов, исследования и классификации состава грунта дна, например при планировании строительства подводных объектов или прокладки трубопроводов, разведки полезных ископаемых и экологического мониторинга.
По своей сути донные профилографы представляют собой практически тот же эхолот, но с очень низкой частотой излучаемого сигнала ППА, менее 12 Кгц. За счет физических особенностей проникновения низкочастотных звуковых волн в твёрдых средах и большой мощности сигналов акустический сигнал проникает в донный грунт на глубину более 100 метров, чем меньше частота сигнала, тем больше проникающая способность. По способу размещения ППА различают буксируемые и стационарные профилографы. Очень часто в одном буксируемом аппарате совмещается гидролокатор бокового обзора и профилограф дна.
Гидроакустические системы позиционирования
Гидроакустические системы позиционирования (ГСП). ГСП предназначены для определения точных координат подводных объектов, а также для отслеживания траектории движения и текущей глубины нахождения подводных аппаратов и водолазов в реальном масштабе времени. ГСП представляют собой один или несколько стационарных передающих гидроакустических маяков, установленных на морском дне или судне носителе, маяк-ответчик на перемещающемся или стационарном объекте, ППА или гидрофон на судне-носителе и систему обработки и выдачи информации на борту судна-носителя. ГСП по своей сути является относительной системой координат с судном-носителем в центре отсчёта, при использовании системы GPS возможно позиционирования в абсолютных географических координатах.
В основе определения координат маяка-ответчика под водой лежат геометрические законы нахождения координат какой-либо точки по известным координатам трёх других точек, так называемых базисных точек. Расстояние между двумя точками базиса называется базисной линией. Длина базисной линии определяет алгоритм подсчёта координат и тип ГСП.
Различают следующие типы ГСП:
- ГСП с длинной базисной линией (LBL системы).
- ГСП с короткой базисной линией (SBL системы).
- ГСП с ультракороткой базисной линией (USBL, иногда SSBL системы)
- ГСП комбинированного типа, например LUSBL система.
Примечания
- ↑ Сегнетова соль — это двойная натриево-калиевая соль винной кислоты с четырьмя молекулами кристаллизационной воды, обозначаемая химической формулой NaKC4H406 + 4H20.
Литература и источники информации
ЛИТЕРАТУРА:
- В.В. Шулейкин Физика моря. — Москва: «Наука», 1968г.. — 1090 с.
- И.А. Румынская Основы гидроакустики. — Москва: «Судостроение», 1979 г.. — 105 с.
- Ю.А. Корякин Гидроакустические системы. — СПб: «Наука Санкт-Петербурга и морская мощь России», 2002 г.. — 416 с.
ССЫЛКИ: