Добро пожаловать на Леста Игры Wiki!
Варианты
/
/
Гидролокатор

Гидролокатор

Перейти к: навигация, поиск

Гидролокатор (сонар) - комплекс для определения с помощью акустических сигналов положения подводных и плавучих объектов (первоначально этот термин использовался применительно к эхолокационным приборам для обнаружения подводных лодок, теперь употребляется в более широком значении).

Главными элементами гидролокатора являются подводный излучатель мощного акустического сигнала и чувствительный приемник, реагирующий даже на слабые отражения этого сигнала от погруженных в воду объектов. Конструируются оба эти элемента с таким расчетом, чтобы их компоновка в локаторе обеспечивала определение направления на отражающий объект и расстояния до него.

На подводных лодках и надводных судах гидролокаторы служат основными - а зачастую и единственными - средствами сбора информации об условиях и обстоятельствах под морской поверхностью

История

В 1936 году был разработан и прошёл испытания первый отечественный образец ультразвукового прибора подводного наблюдения (УЗПН), как в то время называли гидролокационные станции. Принципиальное отличие этого прибора от шумопеленгатора – возможность измерять расстояние до обнаруженного объекта, исходя из расчёта времени возвращения отражённого эха.

Устройство гидролокатора

Sidesonar1.jpg Гидролокаторы делятся на два основных типа: активные (излучающие сигнал и принимающие его отражение) и пассивные (принимающие шумы, издаваемые целью). Преобразователь представляет собой устройство, в котором электрическая энергия преобразуется в механическую и наоборот. Такими преобразователями являются, например, микрофоны и громкоговорители. В гидролокаторе преобразователь исполняет обе функции. Обычно он размещается на днище надводного корабля и в верхней части корпуса подводной лодки.

Иногда преобразователями служат пьезоэлектрические кристаллы (они меняют свои размеры при подаче на них электрического напряжения либо меняют форму при воздействии внешних сил, и на их поверхности возникает разность электрических потенциалов), но в данной схеме используется магнитострикционный (одновременно магнитоупругий) элемент - никелевый стержень с намотанной на него проволочной катушкой индуктивности. При нарастании электрического тока в катушке возникает магнитное поле, сжимающее стержень, при убывании тока - поле, растягивающее его.

На конце стержня закреплена диафрагма, соприкасающаяся с водой, поэтому при сокращениях и удлинениях стержня в воде возбуждаются упругие колебания - звуковые волны. По прибытии эха все происходит в обратном порядке, и движения диафрагмы возбуждают ток в катушке. Набор таких преобразователей располагается по кругу в горизонтальной плоскости; каждый из них ориентирован в своем направлении. Передатчик воздействует на все преобразователи одновременно, и звуковые волны уходят сразу во всех направлениях. Но каждый преобразователь соединен с приемником отдельно, поэтому направление на цель определяется по тому элементу, который "слышит" эхо.

Передатчик. Оператор сидит за пультом управления, контролируя работу передатчика - мощного генератора ультразвуковых импульсов (средняя мощность типичного передатчика - ок. 8 кВт, пиковая в импульсе достигает 160 кВт). Несущая частота передатчика фиксирована ок. 20 кГц, а длительность импульса может меняться оператором от 0,005 до 0,1 с. Частота повторения импульсов тоже может варьироваться от 1 до 60 имп/мин - в зависимости от максимальной величины радиуса зоны обзора (все эхо-сигналы должны быть приняты до момента посыла следующего импульса).

Выбор частоты передатчика зависит от нескольких величин, влияние которых противоположно: с увеличением частоты возрастают потери на трассе, но интенсивность принимаемых собственных шумов воды и габариты преобразователя становятся меньше. Из этих соображений наиболее выгодным диапазоном эхолокации является полоса частот от 18 до 24 кГц. Акустические устройства шумопеленгации наиболее эффективно работают на частотах ниже 1 кГц, на которых наиболее мощно излучаются шумы кораблей.

Выходная мощность передатчика ограничивается сверху тем ее значением, при котором в воде возникает кавитация. Кавитационные пузырьки незамедлительно отражают в преобразователь существенную долю излучаемой мощности. С увеличением давления (т.е. глубины) возрастает и допустимый предел излучаемой акустической мощности. Реле приема-передачи. Так как один и тот же преобразователь выступает в роли излучателя и чувствительного элемента, его следует автоматически подключать то к передатчику, то к приемнику.


Приемник. Принимаемые различными чувствительными элементами сигналы раздельно поступают в приемно-усилительный тракт, а оттуда - на коммутатор. В приемном тракте есть специальные схемы подавления паразитных сигналов. Коммутатор. Здесь принятый сигнал направляется по двум раздельным каналам - слухового контроля и видеоиндикации.

Типы гидролокаторов

* Гидролокаторы кругового и секторного обзора. Гидролокаторы кругового и секторного обзора применяются для выполнения широкого ряда задач от гражданских до сугубо военных. Они предназначены для подводной навигации, поиска и допоиска подводных объектов, построения охранных зон и периметров. Гидролокаторы кругового и секторного обзора устанавливаются при входе в гавани и порты, на нефтяных платформах, кораблях, подводных лодках, обитаемых подводных аппаратах, телеуправляемых подводных аппаратах, применяются в переносном исполнении водолазами. Существуют специальные гидролокаторы, работающие с вертолёта при погружении ППА на кабель-тросе в воду.

* Гидролокаторы бокового обзора. Гидролокаторы бокового обзора (ГБО) в основном применяются для поиска объектов, находящихся на морском дне и исследования рельефа дна для прокладки и обслуживания кабелей связи и трубопроводов.

"Классический" ГБО выполняется в виде буксируемого подводного аппарата в форме торпеды с двумя ППА по правой и левой стороне и буксируется на расстоянии 30-50 метров от дна со скоростью до 5 узлов. При угле обзора каждого ППА 45º, полоса сканирования дна достигает 100 метров. В некоторых случаях, особенно при прокладке трубопроводов и кабелей связи,

* Эхолоты. Эхолоты являются измерительными приборами, предназначенными для промера глубин, отображения профиля и примерной структуры дна, поиска и классификации различных объектов на дне и в толще воды, а также для выполнения различных навигационных задач. Независимо от сферы использования и типа все эхолоты имеют примерно одинаковую конфигурацию: ППА, блок обработки сигналов и надводный блок отображения информации. ППА эхолота имеет коническую вертикальную диаграмму направленности с углом обзора от 10 до 30º. При этом эхолот, как бы “освещает" полосу дна непосредственно под килем судна.

* Профилографы морского дна. Профилографы дна предназначены для поиска заглубленных на дне объектов, например трубопроводов или кабелей, нахождения заиленных подводных объектов, исследования и классификации состава грунта дна, например при планировании строительства подводных объектов или прокладки трубопроводов, разведки полезных ископаемых и экологического мониторинга.

* Гидроакустические системы позиционирования. Гидроакустические системы позиционирования (ГСП). ГСП предназначены для определения точных координат подводных объектов, а также для отслеживания траектории движения и текущей глубины нахождения подводных аппаратов и водолазов в реальном масштабе времени. ГСП представляют собой один или несколько стационарных передающих гидроакустических маяков, установленных на морском дне или судне носителе, маяк-ответчик на перемещающемся или стационарном объекте, ППА или гидрофон на судне-носителе и систему обработки и выдачи информации на борту судна-носителя. ГСП по своей сути является относительной системой координат с судном-носителем в центре отсчёта, при использовании системы GPS возможно позиционирования в абсолютных географических координатах.